Co:Spinel(鈷尖晶石)
調(diào)Q晶體-南京光寶-CRYLINK-11-1536x560-1-1024x373.jpeg)
我司的Co:spinel晶體,又稱鈷尖晶石,化學(xué)式為Co2+: MgAl2O4,是一種綜合性比較優(yōu)良的調(diào)Q晶體產(chǎn)品。鈷尖晶石是可飽和吸收體,是用于在人眼安全波長(zhǎng) 1.5μm 下工作的固態(tài)激光器的無(wú)源 Q 開關(guān)。鈷摻雜的鋁酸鎂尖晶石(Co:MgAl2O4)可以產(chǎn)生短的納秒脈沖,在眼睛安全波長(zhǎng) 1.5μm 附近具有高峰值功率,非常適合遙測(cè)應(yīng)用。具有高吸收段、使用壽命長(zhǎng)、鈷分布均勻、吸收帶寬等優(yōu)點(diǎn)。Co2+摻雜 MgAl2O4 的吸收光譜在 1200-1600nm 波長(zhǎng)范圍內(nèi)表現(xiàn)出寬的吸收帶,表明 Co2+離子取代了 MgAl2O4晶格中四面體配位的 Mg2+離子。具有固態(tài)可飽和吸收體的固態(tài)激光器的無(wú)源 Q 開關(guān)是一種非常有吸引力的 Q 開關(guān)技術(shù),因?yàn)樗试S開發(fā)緊湊且低成本的納米和亞納秒脈沖激光源。在工業(yè)應(yīng)用中,由于 1.5μm 激光的輻射對(duì)眼睛安全性較高,因此該波長(zhǎng)得到廣泛關(guān)注。這種波長(zhǎng)的其他優(yōu)點(diǎn)是大氣和熔融石英波導(dǎo)的高透明度和靈敏的室溫光探測(cè)器(Ge 和 InGaAs 光電二極管)的可用性。這使得 1.5μm 激光器非常適用于測(cè)距儀,環(huán)境傳感,電信,手術(shù)等。Co:尖晶石吸收峰接近 1520nm,最常用于人眼安全激光。
物理和化學(xué)特性
屬性 | 數(shù)值 |
化學(xué)式 | Co2+:MgAl2O4 |
晶體結(jié)構(gòu) | 立方 |
晶格參數(shù) | 8.07? |
密度 | 3.62 g/cm3 |
熔點(diǎn) | 2105°C |
折光率 | n=1.6948 @1.54 μm |
導(dǎo)熱系數(shù)/((W·cm-1·K-1 @ 25°C) | 0.033W |
熱膨脹/(10-6 /°C @ 25°C) | 1.046 |
比熱/(J·g-1·K-1) | 5.9 |
硬度(莫氏) | 8.2 |
消光比 | 25dB |
取向 | [100] or [111] < ±0.5° |
光密度 | 0.1-0.9 |
損傷閾值 | >500 MW/cm2 |
Co2+的摻雜濃度 | 0.01-0.3 atm% |
材料規(guī)格
屬性 | 數(shù)值 |
濃度 | (0.05~0.35) wt% |
吸收系數(shù) | 0 ~ 7 cm-1 |
基態(tài)吸收截面GSA(E-19 cm2) | 2.8(±0.4)@1340nm |
激發(fā)態(tài)吸收截面ESA(E-20 cm2) | 2.0(±0.6)@1340nm |
基態(tài)吸收截面GSA(E-20 cm2) | 3.5(±0.4)@1540nm |
激發(fā)態(tài)吸收截面ESA(E-20 cm2) | 1.0(±0.6)@1540nm |
工作波長(zhǎng) | 1200 – 1600 nm |
最終配置 | Flat/Flat |
品質(zhì)因數(shù)(FOM) | 100~300 |
涂層 | AR/AR@1540,R<0.2%; |
AR/AR@1340,R<0.2% |
吸收發(fā)射光譜
![]() | ![]() |
吸收光譜1 | 吸收光譜2 |
![]() | |
發(fā)射光譜 |
參考文獻(xiàn)
[1]? Denker B ,? Galagan B ,? Kisel V , et al. Passive shutters for Q-switching continuously diode-pumped Er-glass laser[M].? 2005. |
[2] K, Izumi, S, et al. Optical properties of 3d transition-metal-doped MgAl2O4 spinels[J]. Physical Review B, 2007, 76(7):75111-75111. |
[3]? Nataf L , F Rodríguez,? Valiente R . Pressure-induced Co2+ photoluminescence quenching in MgAl2O4[J]. Physical review. B, Condensed matter, 2012, 86(12):4995-5013. |
[4]? Yumashev K V ,? Denisov I A ,? Kuleshov N V . Passive Q-switching of 1.34-/spl mu/m neodymium laser using Co/sup 2+/:LiGa/sub 5/O/sub 8/ and Co/sup 2+/:MgAl/sub 2/O/sub 4/[C]// Conference Digest. 2000 Conference on Lasers and Electro-Optics Europe (Cat. No.00TH8505). IEEE, 2000. |
[5]? Lin H Y ,? Sun D ,? Copner N , et al. Nd:GYSGG laser at 1331.6 nm passively Q-switched by a Co:MgAl2O4 crystal[J]. Optical Materials, 2017, 69:250-253. |
[6]? Bajor A L ,? Chmielewski M ,? Diduszko R , et al. Czochralski growth and characterization of MgAl2O4 single crystals[J]. Journal of Crystal Growth, 2014, 401(sep.1):844-848. |
[7] Javed, Ahmad, Maria, et al. Effect of Co2+ substitution on MgAl2O4 studied by infrared reflectance spectroscopy[J]. Optik International Journal for Light & Electron Optics, 2017. |
[8]? Belghachem N ,? Mlynczak J ,? Kopczynski K , et al. Thermal analysis of a diffusion bonded Er3+,Yb3+:glass/Co2+: MgAl2O4 microchip lasers[J]. Optical Materials, 2016, 60:546-551. |
[9] Nabil, Belghachem, Jaroslaw, et al. Comparison of laser generation in thermally bonded and unbonded Er3+,Yb3+:glass/Co2+:MgAl2O4 microchip lasers[J]. Optical Materials, 2015. |
[10]? Duan X L ,? Song C F ,? Wu Y C , et al. Preparation and optical properties of nanoscale MgAl 2O 4 powders doped with Co 2+ ions[J]. Journal of Non-Crystalline Solids, 2008, 354(29):3516-3519. |
[11]? Yumashev K V ,? Denisov I A ,? Posnov N N , et al. Nonlinear absorption properties of Co2+:MgAl2O4 crystal[J]. Applied Physics B, 2000, 70(2):179-184. |
[12]? Kanwal K ,? Ismail B ,? Rajani K S , et al. Effect of Co2+ Ions Doping on the Structural and Optical Properties of Magnesium Aluminate[J]. Journal of Electronic Materials, 2017. |
[13]? Ryabtsev G L ,? Bezyazychnaya T V ,? Bogdanovich M V , et al. Optimized diode-pumped passive Q-switched ytterbium–erbium glass laser[J]. Applied Physics B, 2012, 108(2):283-288. |
[14]? Tolstik N A ,? Troshin A E ,? Kurilchik S V , et al. Spectroscopy, continuous-wave and Q-switched diode-pumped laser operation of Er3+,Yb3+:YVO4 crystal[J]. Applied Physics B, 2007, 86(2):275-278. |
[15]? Mlynczak J ,? Belghachem N . Monolithic thermally bonded Er3+, Yb3+:glass/Co2+:MgAl2O4 microchip lasers[J]. Optics Communications, 2015, 356(4):166-169. |
[16]? Duan X L ,? Yuan D R ,? Cheng X F , et al. Absorption and photoluminescence characteristics of Co 2+:MgAl 2O 4 nanocrystals embedded in sol–gel derived SiO 2-based glass[J]. Optical Materials, 2004, 25(1):65-69. |
[17]? Nemec M ,? Jelinkova H ,? Sulc J , et al. Passive Q-switching at 1645 nm of Er:YAG laser with Co:MALO saturable absorber[C]// Quantum Electronics Conference & Lasers & Electro-optics. IEEE, 2012. |
[18]? Bhardwaj A ,? Agrawal L ,? Pal S , et al. Optimization of passively Q -switched Er:Yb:Cr:phosphate glass laser: theoretical analysis and experimental results[J]. Applied Physics B, 2007, 86(2):293-301. |
[19]? Kalashnikov V L ,? Shcherbitsky V G ,? Kuleshov N V , et al. Pulse energy optimization of passively Q-switched flash-lamp pumped Er:glass laser[J]. Applied Physics B, 2002, 75(1):35-39. |
如果你對(duì)我們的Co:Spinel(鈷尖晶石)感興趣,請(qǐng)聯(lián)系我們獲取價(jià)格或申請(qǐng)樣品。
與Co:Spinel(鈷尖晶石)相關(guān)的文章:
與Co:Spinel(鈷尖晶石)相關(guān)的案例:
與Co:Spinel(鈷尖晶石)相關(guān)的解決方案:
與Co:Spinel(鈷尖晶石)相關(guān)的視頻: